15,594 research outputs found

    Representation of perfectly reconstructed octave decomposition filter banks with set of decimators {2,4,4} via tree structure

    Get PDF
    In this letter, we prove that a filter bank with set of decimators {2,4,4} achieves perfect reconstruction if and only if it can be represented via a tree structure and each branch of the tree structure achieves perfect reconstruction

    Coronal heating in multiple magnetic threads

    Get PDF
    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability

    Gamma-ray emission from globular clusters

    Full text link
    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as Millisecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gamma-ray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed gamma-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that gamma-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.Comment: 11 pages, 7 figures, 2 tables, J. Astron. Space Sci., in pres

    Outward Influence and Cascade Size Estimation in Billion-scale Networks

    Full text link
    Estimating cascade size and nodes' influence is a fundamental task in social, technological, and biological networks. Yet this task is extremely challenging due to the sheer size and the structural heterogeneity of networks. We investigate a new influence measure, termed outward influence (OI), defined as the (expected) number of nodes that a subset of nodes SS will activate, excluding the nodes in S. Thus, OI equals, the de facto standard measure, influence spread of S minus |S|. OI is not only more informative for nodes with small influence, but also, critical in designing new effective sampling and statistical estimation methods. Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence spread/outward influence at scale and with rigorous theoretical guarantees. The proposed methods are built on two novel components 1) IICP an important sampling method for outward influence, and 2) RSA, a robust mean estimation method that minimize the number of samples through analyzing variance and range of random variables. Compared to the state-of-the art for influence estimation, SIEA is Ω(log4n)\Omega(\log^4 n) times faster in theory and up to several orders of magnitude faster in practice. For the first time, influence of nodes in the networks of billions of edges can be estimated with high accuracy within a few minutes. Our comprehensive experiments on real-world networks also give evidence against the popular practice of using a fixed number, e.g. 10K or 20K, of samples to compute the "ground truth" for influence spread.Comment: 16 pages, SIGMETRICS 201

    Axion Dark Matter and Cosmological Parameters

    Full text link
    We observe that photon cooling after big bang nucleosynthesis (BBN) but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of 7^7Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate (BEC) provides a possible mechanism, because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.Comment: 4 pages, one figure. Version to appear in Phys. Rev. Lett., incorporating useful comments by the referees and emphasizing that photon cooling by axion BEC is a possibility, not a certaint

    Representations of linear dual rate system via single SISO LTI filter, conventional sampler and block sampler

    Get PDF
    In this brief, it is proved that a linear dual-rate system can be represented via a series cascade of: 1) a conventional expander, a single-input single-output (SISO) linear time-invariant (LTI) filter and a block decimator, or 2) a block expander, an SISO LTI filter and a conventional decimator. Hence, incompatible nonuniform filter banks could achieve perfect reconstruction via LTI filters, conventional samplers and block samplers without expanding the input-output dimension of a subsystem of linear dual-rate systems or converting the nonuniform filter banks to uniform filter banks. The main advantage of the proposed representations is to avoid complicated design of the circuit layout caused by connecting subsystems with large input-output dimension or a lot of subsystems togethe
    corecore